

Gestural Activity Recognition for Canine-Human Communication

Giancarlo Valentín, Melody Jackson, Thad Starner

Animal-Computer Interaction Lab, School of Interactive Computing, Georgia Institute of Technology

INTRODUCTION

Despite close collaboration existing between humans and working dogs, there are few options for reliable twoway communication between them. We propose the use of intentional, motionbased dog gestures as a mechanism of communication. In particular, we are interested in gestures that can be

identified with the use of inertial measurement sensors such as accelerometers and gyroscopes.

Border Collie engaging in a play bow gesture.

METHODOLOGY

We began gathering data from dogs using the on-body *Axivity* accelerometer platform developed at Newcastle. It was attached to the front of a service dog harness. The placement of the sensor on the neck (as a collar) was initially explored, but postponed until a mechanism to maintain the position (or compensate for its change) is determined.

Two accelerometer units on a Border Collie.

We used a ten-fold cross validation method in continuous streams of data. Classification by random forests yielded the highest accuracy across all techniques for within-subject training and testing (98% accuracy for ten activities). Improving on subject-independent classification is a critical next step in this work.

Transitional Gestures:

- sit from stand
- stand from down-stay
- sit from down-stay
- down-stay from stand
- down-stay from sit

Rotational gestures:

- roll over (to the right)
- roll over (to the left)
- roll-return (to the right)
- roll-return (to the left)
- spin (clockwise)
- twirl (counterclockwise)

Current accelerometer configuration.

Proposed accelerometer configuration.

